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Fig. 4 Maximum admissible applied stress vs strap width.

sented in Fig. 4. Determination of more realistic applied
stress distribution for fuselage panels may be found in the
analysis presented in Ref. 4.
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Higher Vibration Modes by Matrix
Iteration

L. W. REHFIELD*
Georgia Institute of Technology, Atlanta, Ga.

Introduction

HE method of matrix iteration remains a useful approach
to determining normal modes of vibration for elastic
structures. It is straightforward to use, with or without
the aid of a digital computer, and it converges rapidly if the
natural frequencies are well separated. It possesses the dis-
advantage that numerical errors in lower vibration modes are
_ propagated into the calculations for higher modes. This
difficulty can be overcome, however, by employing a hybrid
method which alternately searches for zeros in the character-
istic determinant in the neighborhood of frequencies found
by iteration. '

The usual method of finding higher modes by matrix
iteration is sweeping, which is described in textbooks on
structural dynamics.!=® In the sweeping technique a matrix
must be generated which renders any trial matrix for, say,
the kth vibration mode orthogonal to the first £ — 1 modes.
Thus, orthogonality of modes is assured (to within the
numerical accuracy implied) and the dynamic equations are
solved by iteration. '

Another method for finding higher modes can be devised
which. satisfies both the orthogonality relations and the dy-
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namic equations simultaneously by iteration. It stems from
the result presented without proof on pages 168—169 of Ref. 1;
it was communicated to these authors by M. J. Turner of
the Boeing Airplane Company. This approach is the subject
of this Note, and it will be referred to as “Turner’s method.”

Derivation of Turner’s Method

Consider a dynamic system characterized by n-degrees of
freedom. Assume for illustrative purposes that the first
vibration mode ¢‘,x; and its natural frequency w; have
been found by some means and that it is desired to find the
second mode ¢ and its corresponding frequency w, by
matrix iteration. The second mode must satisfy the ortho-
gonality relation

(cp(l)Tlxn)(Mnxn)(P(z)nxl =0 (1)
and the dynamic equation
(Drxn)ep@ux s = [1(@2)*1p®nx 93]

M is the system’s mass matrix and D = CM. C is the flexi-
bility matrix for the structure.

A modified iteration problem can be defined of the following
form:

D — Bux 1 (@) ™Ay = (1/w)Anx1 ©))
A is a matrix of modal amplitudes and B is a matrix whose
form is as yet unspecified. Notice that if we set A = ®
and w = w, Equation (3) will be satisfied for any nonzero
B matrix. We will choose a B-matrix that will insure that
the iteration of this equation will converge to ¢® and w..
~ Any trial vector A can be expressed as a linear combination
of the » true modes of the form

A= i a@® =[@We®. . .om] (4
k=1 [ ] a

N 4
nXn An

= (‘ann)(anx 1)
¢ is the modal matrix composed of columns of vibration

modes and a is the matrix of modal amplitudes. ¢ satisfies
the equation

1/(wy)? 0 0
DE=% 0 1/(wy)? 0)
0 1/(wn)?
Also
M, 0 0
ome-—| 0 M 6)
0 M,
where the M, are generalized masses defined as
M= (@) Mep® ™

If Eq. (4) is substituted into the left-hand side of Eq. (3),
we obtain

D®a — B(ep ) TMdPa ®)
1/{w:)?
a — B[M,00...0]a
= 1/(w2)? S——
n-terms
1/(wn)?
1 o®—MB LI |
N (W 1 )al T2, Gy 20
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If we wish our iteration procedure to converge to the second
mode, it is clear that we must eliminate any contribution due
to the first mode. This is accomplished by choosing the
matrix B so as to force the coefficient of g, to zero. Thus,
we set

B = [1/Mi(w:)*le® ©)

and the ¢"-contribution is removed from the iteration pro-
cess. The modified equation to be iterated is

[D — [1/Mi(01)*J0 V(@) ™MA = (1/wHA  (10)

The result of solving this equation will be second mode and
frequency.

The extension of Turner’s method to higher modes and
frequencies is straightforward. If we have determined &
modes and frequencies and wish to find the (k£ + 1)-st mode,
we simply iterate the following equation:

k 1 (P(j)(ﬂp(j))TM _ R
[~ (™ e o

Conclusions

Turner’s method of matrix iteration for higher modes and
frequencies has been developed. It is straightforward to
apply and requires no matrix inversions for its use. It is
particularly adaptable to use with digital computers and
requires only the subtraction of a matrix from the dynamic
matrix D after each successive mode and frequency are found.
This method has been used with great success at Georgia
Tech.
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Angle of Attack Increase of an
Airfoil in Decelerating Flow

T. STRAND*
Air Vehicle Corporation, San Diego, Calif.

T has been found experimentally that the maximum

lift coefficient of a transport airplane in flight is substan-
tially higher than that measured in a wind tunnel when the
flight airplane is undergoing an angle of attack increase
while decelerating.*

This purpose of this Note is to determine, using inviscid
theory, the acrodynamic characteristics of a two-dimensional
airfoil whose angle of attack « is increasing at a constant
rate &, and whose velocity U is decreasing at a constant rate

—U. Thus, let
U=Uo,+ Ut ®
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where U, is the velocity at # = 0. Without loss of generality
it may be assumed that the airfoil is a flat plate. To sim-
plify the expressions, it will be assumed that the axis of rota-
tion of the airfoil is located at the midchord. The vertical
distance % to an arbitrary point on the flat plate is then given
by the following expression:

7= —xa= —x(xo + &t) @)

where x is the horizontal coordinate, and «, is the angle of
attack at r = 0.

To obtain a solution, using the concept of acceleration
potential,?® it will be necessary to determine the vertical
acceleration a, of a fluid particle adjacent to the airfoil
surface, i.e.,

d*n 9%y 9%

“ar " Vaxatwa

ay

bl .
U2 =1 — _2Us— U+ at) (3)

Let us now introduce a new coordinate system X, ¥, which
is rotated with respect to the x, y system by the angle «. In
this new coordinate system the flat plate airfoil lies along the
abscissa. Because o <1 we find a, ~ a;. Defining a com-
plex acceleration function W(2)[=¢ + i), where 7 = % + i,
we have

Integration with respect to X along ¥ = 0 on the airfoil yields
= [2U6 + Ul + )% + C(t) ®)

Here C(z) is an integration constant. The flat plate airfoil of
chord ¢ is next mapped conformally onto the unit circle
{ = e", where i = (—1)"/?, by

Z== (/A +1/D) (6)

Thus ¥ = (¢/2) cos 8, 7 = 0 for corresponding points on the flat
plate and on the circle. Equation (5) therefore becomes

= [2Us+ Uleo + at)](c/2)cos8 + C @)

The required acceleration function W, whose imaginary
part will reduce to  [Eq. (7)] on { = ¢ and will die out at
infinity, is given by

W=iAd/{+ i2C/({+ 1) ®
where '
A=[2Ux+ U(oo + a)le/2 )
The real part of Eq. (8) yields
¢ = A sinf + C tan(f/2) 10)

From the general theory of acceleration potentials, we have
the following expression for the lift L of an airfoil in unsteady
flow

c/2
L=2p ¢ dx (11)
-cf2
It is noted that the acceleration potential ¢ is proportional
to the instantaneous chordwise pressure difference between
the upper and lower surfaces of the airfoil. This being the
case, we may, in order to obtain a picture of what is happening,
associate the pressure difference with a fictitious effective
airfoil meanline yielding this pressure distribution in a steady
flow. Denoting the chordwise vortex distribution of the
effective meanline by y, the lift in steady flow becomes

c/2

L=pU| ydx 12

—-c/2



